Structural basis of the mercury(II)-mediated conformational switching of the dual-function transcriptional regulator MerR
نویسندگان
چکیده
The mer operon confers bacterial resistance to inorganic mercury (Hg(2+)) and organomercurials by encoding proteins involved in sensing, transport and detoxification of these cytotoxic agents. Expression of the mer operon is under tight control by the dual-function transcriptional regulator MerR. The metal-free, apo MerR binds to the mer operator/promoter region as a repressor to block transcription initiation, but is converted into an activator upon Hg(2+)-binding. To understand how MerR interacts with Hg(2+) and how Hg(2+)-binding modulates MerR function, we report here the crystal structures of apo and Hg(2+)-bound MerR from Bacillus megaterium, corresponding respectively to the repressor and activator conformation of MerR. To our knowledge, the apo-MerR structure represents the first visualization of a MerR family member in its intact and inducer-free form. And the Hg(2+)-MerR structure offers the first view of a triligated Hg(2+)-thiolate center in a metalloprotein, confirming that MerR binds Hg(2+) via trigonal planar coordination geometry. Structural comparison revealed the conformational transition of MerR is coupled to the assembly/disassembly of a buried Hg(2+) binding site, thereby providing a structural basis for the Hg(2+)-mediated functional switching of MerR. The pronounced Hg(2+)-induced repositioning of the MerR DNA-binding domains suggests a plausible mechanism for the transcriptional regulation of the mer operon.
منابع مشابه
Structural Analysis of the Hg(II)-Regulatory Protein Tn501 MerR from Pseudomonas aeruginosa
The metalloprotein MerR is a mercury(II)-dependent transcriptional repressor-activator that responds to mercury(II) with extraordinary sensitivity and selectivity. It's widely distributed in both Gram-negative and Gram-positive bacteria but with barely detectable sequence identities between the two sources. To provide structural basis for the considerable biochemical and biophysical experiments...
متن کاملMutations in the alpha and sigma-70 subunits of RNA polymerase affect expression of the mer operon.
The mercury resistance (mer) operon is transcribed from overlapping, divergent promoters: PR for the regulatory gene merR and P(TPCAD) for the structural genes merTPCAD. The dyadic binding site for MerR lies within the 19-bp spacer of the sigma70-dependent P(TPCAD). Unlike typical repressors, MerR does not exclude RNA polymerase from P(TPCAD) but rather forms an inactive complex with RNA polyme...
متن کاملIn vivo DNA-protein interactions at the divergent mercury resistance (mer) promoters. I. Metalloregulatory protein MerR mutants.
Regulation of transcriptional initiation of the Tn21 mercury resistance (mer) operon occurs at the divergent promoter region lying between the structural genes (merTPCAD) and a regulatory gene (merR). During repression, both promoters are negatively regulated by MerR bound to a dyadic operator located between the -10 and -35 hexamers of PTPCAD. Upon Hg(II) induction, MerR activates transcriptio...
متن کاملOccurrence and characterization of mercury resistance in the hyperthermophilic archaeon Sulfolobus solfataricus by use of gene disruption.
Mercury resistance mediated by mercuric reductase (MerA) is widespread among bacteria and operates under the control of MerR. MerR represents a unique class of transcription factors that exert both positive and negative regulation on gene expression. Archaea and bacteria are prokaryotes, yet little is known about the biological role of mercury in archaea or whether a resistance mechanism occurs...
متن کاملEngineered holliday junctions as single-molecule reporters for protein-DNA interactions with application to a MerR-family regulator.
Protein-DNA interactions are essential for gene maintenance, replication, and expression. Characterizing how proteins interact with and change the structure of DNA is crucial in elucidating the mechanisms of protein function. Here, we present a novel and generalizable method of using engineered DNA Holliday junctions (HJs) that contain specific protein-recognition sequences to report protein-DN...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 43 شماره
صفحات -
تاریخ انتشار 2015